Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.902
1.
Eur J Drug Metab Pharmacokinet ; 49(3): 393-403, 2024 May.
Article En | MEDLINE | ID: mdl-38642299

BACKGROUND AND OBJECTIVE: The prediction of pharmacokinetic parameters for drugs metabolised by cytochrome P450 enzymes has been the subject of active research for many years, while the application of in vitro-in vivo extrapolation (IVIVE) techniques for non-cytochrome P450 enzymes has not been thoroughly evaluated. There is still no established quantitative method for predicting hepatic clearance of drugs metabolised by uridine 5'-diphospho-glucuronosyltransferases (UGTs), not to mention those which undergo hepatic uptake. The objective of the study was to predict the human hepatic clearance for telmisartan based on in vitro metabolic stability and hepatic uptake results. METHODS: Telmisartan was examined in liver systems, allowing to estimate intrinsic clearance (CLint, in vitro) based on the substrate disappearance rate with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Obtained CLint, in vitro values were corrected for corresponding unbound fractions. Prediction of human hepatic clearance was made from scaled unbound CLint, in vitro data with the use of the well-stirred model, and finally referenced to the literature value of observed clearance in humans, allowing determination of the essential scaling factors. RESULTS: The in vitro scaled CLint, in vitro by UGT1A3 was assessed using three systems, human hepatocytes, liver microsomes, and recombinant enzymes. Obtained values were scaled and hepatic metabolism clearance was predicted, resulting in significant clearance underprediction. Utilization of the extended clearance concept (ECC) and hepatic uptake improved prediction of hepatic metabolism clearance. The scaling factors for hepatocytes, assessing the in vitro-in vivo difference, changed from sixfold difference to only twofold difference with the application of the ECC. CONCLUSIONS: The study showed that taking into consideration hepatic uptake of a drug allows us to obtain satisfactory scaling factors, hence enabling the prediction of in vivo hepatic glucuronidation from in vitro data.


Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solute Carrier Organic Anion Transporter Family Member 1B3 , Telmisartan , Glucuronosyltransferase/metabolism , Telmisartan/pharmacokinetics , Telmisartan/metabolism , Humans , Microsomes, Liver/metabolism , Glucuronides/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver/metabolism , Liver/enzymology , Metabolic Clearance Rate , Tandem Mass Spectrometry/methods , Hepatocytes/metabolism , Models, Biological , Chromatography, Liquid/methods , Benzoates/pharmacokinetics , Benzoates/metabolism
2.
Article En | MEDLINE | ID: mdl-38423705

Deferasirox is an iron-chelating drug developed by Novartis company for treatment of diseases accompanied by chronic iron overload; such as ß-thalassemia or sickle cell diseases. Owing to its advantages such as high affinity, specificity and wide therapeutic window, it is considered as first line treatment. The current chapter describes the physicochemical characteristics, mode of action, pharmacokinetics, therapeutic applications and synthetic methods for deferasirox. Moreover, it includes Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis for its functional groups. In addition, the selected analytical methods are summarized to aid the analysts in their routine analysis of deferasirox.


Benzoates , Iron Overload , Humans , Deferasirox/pharmacology , Deferasirox/therapeutic use , Benzoates/pharmacology , Benzoates/therapeutic use , Benzoates/metabolism , Triazoles/therapeutic use , Triazoles/pharmacokinetics , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/metabolism , Iron Overload/drug therapy , Iron/metabolism , Iron/therapeutic use
3.
PLoS Comput Biol ; 19(8): e1011371, 2023 08.
Article En | MEDLINE | ID: mdl-37556472

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.


Rhodopseudomonas , Rhodopseudomonas/genetics , Rhodopseudomonas/metabolism , Benzoates/metabolism , Photosynthesis/genetics
4.
Sci Total Environ ; 876: 162739, 2023 Jun 10.
Article En | MEDLINE | ID: mdl-36906024

This study evaluated Acetic acid (AA) and Benzoic acid's (BA) acute and sublethal toxicity by observing mortality, behavioral responses, and changes in the levels of oxidative stress enzymes in Tubifex tubifex. Exposure-induced changes in antioxidant activity (Catalase, Superoxide dismutase), oxidative stress (Malondialdehyde concentrations), and histopathological alterations in the tubificid worms were also noted across exposure intervals. The 96 h LC50 values of AA and BA to T. tubifex were 74.99 and 37.15 mg/l, respectively. Severity in behavioral alterations (including increased mucus production, wrinkling, and reduction in clumping) and autotomy showed concentration-dependent trends for both toxicants. Although histopathological effects also showed marked degeneration in the alimentary and integumentary systems in highest exposure groups (worms exposed to 14.99 mg/l for AA and 7.42 mg/l for BA) for both toxicants. Antioxidant enzymes (catalase and superoxide dismutase) also showed a marked increase of up to 8-fold and 10-fold for the highest exposure group of AA and BA respectively. While species sensitivity distribution analysis revealed T. tubifex as most sensitive to AA and BA compared to other freshwater vertebrates and invertebrates, General Unified Threshold model of Survival (GUTS) predicted individual tolerance effects (GUTS-IT), with slower potential for toxicodynamic recovery, as a more likely pathway for population mortality. Study findings demonstrate BA with greater potential for ecological effects compared to AA within 24 h of exposure. Furthermore, ecological risks to critical detritus feeders like T. tubifex may have severe implications for ecosystem services and nutrient availability within freshwater habitats.


Oligochaeta , Water Pollutants, Chemical , Animals , Catalase/metabolism , Ecosystem , Acetic Acid/toxicity , Acetic Acid/metabolism , Oligochaeta/metabolism , Oxidative Stress , Antioxidants/metabolism , Benzoates/metabolism , Water Pollutants, Chemical/metabolism
5.
Molecules ; 28(3)2023 Jan 29.
Article En | MEDLINE | ID: mdl-36770956

Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.


Cunninghamella , Paeonia , Glucosides/metabolism , Glycosides/metabolism , Cunninghamella/metabolism , Monoterpenes/chemistry , Benzoates/metabolism , Paeonia/chemistry
6.
Nat Prod Res ; 37(8): 1310-1320, 2023 Apr.
Article En | MEDLINE | ID: mdl-34865573

The fungal endophyte Aspergillus sp. strain FVL2, isolated from the traditional medicinal fennel plant, Foeniculum vulgare, was investigated for secondary metabolites. Fermentation on rice medium followed by chromatographic separation delivered three new natural products, 7-demethyl-neosulochrin (1), fumigaclavine I (3) and N-benzoyl-tryptophan (6) together with further 14 known metabolites, 1-O-methyl-sulochrin-4'-sulfate, questin, laccaic acid, isorhodoptilometrin, fumigaclavine A, fumigaclavine C, fumitremorgin C, fumigaquinazoline C, tryptoquivaline J, trypacidin, 3'-O-demethyl-sulochrin, 1-O-methyl-sulochrin, protocatechuic acid, and vermelone. The chemical structures of the new metabolites were determined by NMR spectroscopy and ESI HR mass spectrometry. For fumigaclavine I, we observed the partial deuterium transfer from the solvent to the enol form with a remarkable high stereo selectivity. The discovery of the new seco-anthraquinone 7-demethyl-neosulochrin (1) revealed a second type of ring cleavage by a questin oxygenase. The discovery of diverse secondary metabolites broadens the chemical space of Aspergillus.


Foeniculum , Endophytes/chemistry , Aspergillus/chemistry , Benzoates/metabolism
7.
Orphanet J Rare Dis ; 17(1): 423, 2022 12 05.
Article En | MEDLINE | ID: mdl-36471344

BACKGROUND: Nonketotic hyperglycinemia (NKH) is a severe neurometabolic disorder characterized by increased glycine levels. Current glycine reduction therapy uses high doses of sodium benzoate. The ketogenic diet (KD) may represent an alternative method of glycine reduction. AIM: We aimed to assess clinical and biochemical effects of two glycine reduction strategies: high dose benzoate versus KD with low dose benzoate. METHODS: Six infants with NKH were first treated with high dose benzoate therapy to achieve target plasma glycine levels, and then switched to KD with low dose benzoate. They were evaluated as clinically indicated by physical examination, electroencephalogram, plasma and cerebral spinal fluid amino acid levels. Brain glycine levels were monitored by magnetic resonance spectroscopy (MRS). RESULTS: Average plasma glycine levels were significantly lower with KD compared to benzoate monotherapy by on average 28%. Two infants underwent comparative assessments of brain glycine levels via serial MRS. A 30% reduction of brain glycine levels was observed in the basal ganglia and a 50% reduction in the white matter, which remained elevated above normal, and was equivalent between the KD and high dose benzoate therapies. CSF analysis obtained while participants remained on the KD showed a decrease in glycine, serine and threonine levels, reflecting their gluconeogenetic usage. Clinically, half the patients had seizure reduction on KD, otherwise the clinical impact was variable. CONCLUSION: KD is an effective glycine reduction method in NKH, and may provide a more consistent reduction in plasma glycine levels than high-dose benzoate therapy. Both high-dose benzoate therapy and KD equally reduced but did not normalize brain glycine levels even in the setting of low-normal plasma glycine.


Diet, Ketogenic , Hyperglycinemia, Nonketotic , Infant , Humans , Hyperglycinemia, Nonketotic/drug therapy , Hyperglycinemia, Nonketotic/diagnosis , Glycine/therapeutic use , Glycine/metabolism , Brain/metabolism , Benzoates/metabolism , Benzoates/therapeutic use
8.
Bioresour Technol ; 363: 128001, 2022 Nov.
Article En | MEDLINE | ID: mdl-36150429

Lignin and its derivatives are the most neglected compounds in bio-processing industry due to their toxic and recalcitrant nature. Considering this, the present study aimed at valorizing these toxic compounds by employing Pseudomonas putida KT2440. Acclimatization resulted in improved tolerance with considerable lag phase reduction and aromatics degradation. Glucose as co-substrate enhanced growth and degradation in the toxic environment. The strain was able to degrade 30 % (1.60 g·L-1) lignin, 45 mM benzoate, 40 mM p-coumarate, 35 mM ferulate, 10 mM phenol, 10 mM pyrocatechol and 8 mM aromatics mixture. The strain synthesized biopolymers using these compounds under feast and famine conditions. Characterization using GC-MS, FT-IR, H1 NMR revealed them to be Polyhydroxyalkanoate (PHA) heteropolymers. All the analyzed PHAs contained versatile monomers with Hexadecanoic acid being the major one. This is a novel attempt towards lignin and aromatics degradation coupled with biopolymers synthesis without any genetic manipulation of the strain.


Polyhydroxyalkanoates , Pseudomonas putida , Benzoates/metabolism , Biotransformation , Catechols , Glucose/metabolism , Lignin/chemistry , Organic Chemicals/metabolism , Palmitic Acid/metabolism , Phenols/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Spectroscopy, Fourier Transform Infrared
9.
Microb Pathog ; 172: 105785, 2022 Nov.
Article En | MEDLINE | ID: mdl-36150554

The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).


Glucose , Pasteurellaceae , Phosphoenolpyruvate Sugar Phosphotransferase System , Adenosine/metabolism , Amines/metabolism , Amino Acids/metabolism , Amino Sugars/metabolism , Benzoates/metabolism , Biotin/genetics , Biotin/metabolism , Glucose/metabolism , Metabolome , Methane , Nucleotides/metabolism , Phosphates , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Pyruvates/metabolism , RNA, Messenger/metabolism , Starch/metabolism , Sucrose/metabolism , Terpenes , Transcriptome , Pasteurellaceae/enzymology
10.
BMC Microbiol ; 22(1): 227, 2022 09 28.
Article En | MEDLINE | ID: mdl-36171563

BACKGROUND: Environmental contamination from synthetic plastics and their additives is a widespread problem. Phthalate esters are a class of refractory synthetic organic compounds which are widely used in plastics, coatings, and for several industrial applications such as packaging, pharmaceuticals, and/or paints. They are released into the environment during production, use and disposal, and some of them are potential mutagens and carcinogens. Isophthalate (1,3-benzenedicarboxylic acid) is a synthetic chemical that is globally produced at a million-ton scale for industrial applications and is considered a priority pollutant. Here we describe the biochemical characterization of an enzyme involved in anaerobic degradation of isophthalate by the syntrophically fermenting bacterium Syntrophorhabdus aromaticivorans strain UI that activate isophthalate to isophthalyl-CoA followed by its decarboxylation to benzoyl-CoA. RESULTS: Isophthalate:Coenzyme A ligase (IPCL, AMP-forming) that activates isophthalate to isophthalyl-CoA was heterologously expressed in E. coli (49.6 kDa) for biochemical characterization. IPCL is homologous to phenylacetate-CoA ligase that belongs to the family of ligases that form carbon-sulfur bonds. In the presence of coenzyme A, Mg2+ and ATP, IPCL converts isophthalate to isophthalyl-CoA, AMP and pyrophosphate (PPi). The enzyme was specifically induced after anaerobic growth of S. aromaticivorans in a medium containing isophthalate as the sole carbon source. Therefore, IPCL exhibited high substrate specificity and affinity towards isophthalate. Only substrates that are structurally related to isophthalate, such as glutarate and 3-hydroxybenzoate, could be partially converted to the respective coenzyme A esters. Notably, no activity could be measured with substrates such as phthalate, terephthalate and benzoate. Acetyl-CoA or succinyl-CoA did not serve as CoA donors. The enzyme has a theoretical pI of 6.8 and exhibited optimal activity between pH 7.0 to 7.5. The optimal temperature was between 25 °C and 37 °C. Denaturation temperature (Tm) of IPCL was found to be at about 63 °C. The apparent KM values for isophthalate, CoA, and ATP were 409 µM, 642 µM, and 3580 µM, respectively. Although S. aromaticivorans is a strictly anaerobic bacterium, the enzyme was found to be oxygen-insensitive and catalysed isophthalyl-CoA formation under both anoxic and oxic conditions. CONCLUSION: We have successfully cloned the ipcl gene, expressed and characterized the corresponding IPCL enzyme, which plays a key role in isophthalate activation that initiates its activation and further degradation by S. aromaticivorans. Its biochemical characterization represents an important step in the elucidation of the complete degradation pathway of isophthalate.


Diphosphates , Environmental Pollutants , Acetyl Coenzyme A/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Anaerobiosis , Base Composition , Benzoates/metabolism , Carbon , Carcinogens , Coenzyme A/metabolism , Coenzyme A Ligases , Escherichia coli/metabolism , Glutarates , Hydroxybenzoates , Mutagens , Oxygen , Phenylacetates/metabolism , Phthalic Acids , Phylogeny , Plastics , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Sulfur , Xenobiotics
11.
Front Biosci (Elite Ed) ; 14(2): 15, 2022 06 02.
Article En | MEDLINE | ID: mdl-35730456

BACKGROUND: Halogenated aromatic compounds are more resistant to microbial degradation than non-halogenated aromatic compounds. Microbial degradation of sodium benzoate in the presence of sodium 3-chlorobenzoate is of interest. The ability to degrade aromatic compounds is largely determined by the substrate specificity of the first enzyme that initiates degradation, namely, benzoate 1,2-dioxygenase for benzoate degradation, and 3-chlorobenzoate 1,2-dioxygenase for 3-chlorobenzoate degradation. In this study, the perspective of immobilized cells of Rhodococcus opacus 1CP actinobacterium for degradation of benzoate and 3-chlorobenzoate was explored. METHODS: The biosensor approach (a membrane microbial sensor based on immobilized cells of Rhodococcus opacus 1CP and the Clark-type oxygen electrode as a transducer) was applied to evaluate the actinobacterial cells' responses to benzoate and 3-chlorobenzoate in the absence of both enzymes, benzoate 1,2-dioxygenase and 3-chlorobenzoate 1,2-dioxygenase, or in the presence of one of the said enzymes. RESULTS: Data obtained show that 1CP actinobacterium possessed a constitutive system for the transport of benzoate and 3-chlorobenzoate into culture cells. The affinity of the transport system for benzoate was higher than that for 3-chlorobenzoate. Moreover, adaptation to one substrate did not preclude the use of the second substrate. Probably, porins facilitated the penetration of benzoate and 3-chlorobenzoate into 1CP cells. Analyzing V vs. S dependencies, negative cooperativity was found, when benzoate 1,2-dioxygenase bound substrate (3-chlorobenzoate), while positive cooperativity was determined at benzoate binding. The observed difference could be associated with the presence of at least two systems of 3-chlorobenzoate transport into actinobacterial cells and allosteric interaction of active sites of benzoate 1,2-dioxygenase in the presence of 3-chlorobenzoate. CONCLUSIONS: The membrane microbial sensor based on immobilized Rhodococcus opacus 1CP cells could be useful as a perspective tool for comparative evaluation of enzymes of complex structure such as benzoate- and 3-chlorobenzoate 1,2-dioxygenase.


Dioxygenases , Rhodococcus , Benzoates/metabolism , Chlorobenzoates , Dioxygenases/metabolism , Rhodococcus/metabolism
12.
J Mol Endocrinol ; 69(1): 259-268, 2022 05 10.
Article En | MEDLINE | ID: mdl-35354667

Telmisartan and irbesartan are angiotensin II receptor blockers (ARBs) and reportedly stimulate adiponectin secretion from adipocytes via partial peroxisome proliferator-activated receptor γ (PPARγ) activation. However, quantitative evaluation among different ARBs has not been performed. Adiponectin exerts strong protection against a number of pathological events by suppressing cell death, inhibiting inflammation, and enhancing cell survival, while leptin promotes inflammation, oxidative stress, atherogenesis, and thrombosis. The aim of this study was to identify the most effective ARB enhancing adiponectin secretion without raising leptin secretion from human white adipocytes (HWAs). Among seven ARBs (azilsartan, candesartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan), telmisartan was the most effective ARB for the increase of adiponectin secretion and irbesartan was the second, whereas the other ARBs at 1 µM had no effect on adiponectin secretion. GW9662, a PPARγ antagonist, completely blocked pioglitazone (PPARγ agonist)-induced adiponectin secretion and mRNA expression, whereas it unexpectedly blocked neither telmisartan- nor irbesartan-induced adiponectin secretion and mRNA expression but rather increased them. GW6471, PPARα antagonist, and siRNA for PPARα suppressed telmisartan- and irbesartan-induced adiponectin secretion, suggesting that PPARα is the main target of these ARBs to increase adiponectin secretion in HWAs. Leptin secretion was not affected by any ARBs at 1 µM and GW9662 significantly decreased the basal secretion of leptin, suggesting that basal leptin secretion is regulated in a PPARγ-dependent manner. We conclude that telmisartan is the most effective ARB to increase adiponectin secretion via PPARα without raising leptin secretion from HWAs.


Adiponectin , Angiotensin Receptor Antagonists , Adipocytes/metabolism , Adiponectin/metabolism , Angiotensin II Type 1 Receptor Blockers/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Benzoates/metabolism , Benzoates/pharmacology , Humans , Inflammation/metabolism , Irbesartan/pharmacology , Leptin/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism , RNA, Messenger/metabolism , Telmisartan/metabolism , Telmisartan/pharmacology
13.
Microbiol Res ; 259: 126998, 2022 Jun.
Article En | MEDLINE | ID: mdl-35276454

Polyextremophilic, hydrocarbonoclastic Pseudomonas aeruginosa san ai can survive under extreme environmental challenges in the presence of a variety of pollutants such as organic solvents and hydrocarbons, particularly aromatics, heavy metals, and high pH. To date, the metabolic plasticity of the extremophilic P. aeruginosa, has not been sufficiently studied in regard to the effect of changing carbon sources. Therefore, the present study explores the carbon metabolic pathways of polyextremophilic P. aeruginosa san ai grown on sodium benzoate versus glucose and its potential for aromatic degradation. P. aeruginosa san ai removed/metabolised nearly 430 mg/L of benzoate for 48 h, demonstrating a high capacity for aromatic degradation. Comparative functional proteomics, targeted metabolomics and genomics analytical approaches were employed to study the carbon metabolism of the P. aeruginosa san ai. Functional proteomic study of selected enzymes participating in the ß-ketoadipate and the Entner-Doudoroff pathways revealed a metabolic reconfiguration induced by benzoate compared to glucose. Metabolome analysis implied the existence of both catechol and protocatechuate branches of the ß-ketoadipate pathway. Enzymatic study of benzoate grown cultures confirmed the activity of the ortho- catechol branch of the ß-ketoadipate pathway. Even high concentrations of benzoate did not show increased stress protein synthesis, testifying to its extremophilic nature capable of surviving in harsh conditions. This ability of Pseudomonas aeruginosa san ai to efficiently degrade benzoate can provide a wide range of use of this strain in environmental and agricultural application.


Benzoates , Extremophiles , Bacterial Proteins/metabolism , Benzoates/metabolism , Biodegradation, Environmental , Carbon , Glucose/metabolism , Proteomics , Pseudomonas aeruginosa/metabolism
14.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Article En | MEDLINE | ID: mdl-35259264

The cis-dihydroxylation of arenes by Rieske dearomatizing dioxygenases (RDDs) represents a powerful tool for the production of chiral precursors in organic synthesis. Here, the substrate specificity of the RDD benzoate dioxygenase (BZDO) in Ralstonia eutropha B9 whole cells was explored using quantitative 1H nuclear magnetic resonance spectroscopy (q1H-NMR). The specific activity, specific carbon uptake, and regioselectivity of the dihydroxylation reaction were evaluated in resting cell cultures for a panel of 17 monosubstituted benzoates. Two new substrates of this dioxygenase system were identified (2-methyl- and 3-methoxybenzoic acid) and the corresponding cis-diol metabolites were characterized. Higher activities were observed for benzoates with smaller substituents, predominantly at the 3-position. Elevated activities were also observed in substrates bearing greater partial charge at the C-2 position of the benzoate ring. The regioselectivity of the reaction was directly measured using q1H-NMR and found to have positive correlation with increasing substituent size. These results widen the pool of cis-diol metabolites available for synthetic applications and offer a window into the substrate traits that govern specificity for BZDO.


Cupriavidus necator , Dioxygenases , Benzoates/metabolism , Cupriavidus necator/metabolism , Dioxygenases/metabolism , Proton Magnetic Resonance Spectroscopy , Substrate Specificity
15.
Mol Cell Proteomics ; 21(4): 100215, 2022 04.
Article En | MEDLINE | ID: mdl-35189333

Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.


Deltaproteobacteria , Proteome , Bacteria/metabolism , Benzoates/metabolism , Deltaproteobacteria/metabolism , Lysine/metabolism , Proteome/metabolism
16.
Arch Toxicol ; 96(3): 899-918, 2022 03.
Article En | MEDLINE | ID: mdl-35089383

Tri-(2-ethylhexyl) trimellitate (TEHTM) is a plasticizer for polyvinyl chloride (PVC) material used in medical devices. It is an alternative to di-(2-ethylhexyl) phthalate (DEHP), a well-known reprotoxic and endocrine disruptor. As plasticizers are known to easily migrate when in contact with fatty biological fluids, patient exposure to TEHTM is highly probable. However, there is currently no data on the potential endocrine-disrupting effects of its human metabolites. To evaluate the effects of TEHTM metabolites on endocrine activity, they were first synthesized and their effects on estrogen, androgen and thyroid receptors, as well as steroid synthesis, were investigated by combining in vitro and in silico approaches. Among the primary metabolites, only 4-MEHTM (4-mono-(2-ethylhexyl) trimellitate) showed agonist activities on ERs and TRs, while three diesters were TR antagonists at non-cytotoxic concentrations. These results were completed by docking experiments which specified the ER and TR isoforms involved. A mixture of 2/1-MEHTM significantly increased the estradiol level and reduced the testosterone level in H295R cell culture supernatants. The oxidized secondary metabolites of TEHTM had no effect on ER, AR, TR receptors or on steroid hormone synthesis. Among the fourteen metabolites, these data showed that two of them (4-MEHTM and 2/1-MEHTM) induced effect on hormonal activities in vitro. However, by comparing the concentrations of the primary metabolites found in human urine with the active concentrations determined in bioassays, it can be suggested that the metabolites will not be active with regard to estrogen, androgen, thyroid receptors and steroidogenesis-mediated effects.


Benzoates/toxicity , Endocrine Disruptors/toxicity , Plasticizers/toxicity , Benzoates/metabolism , Cell Line, Tumor , Computer Simulation , Endocrine Disruptors/metabolism , Estradiol/metabolism , Humans , Molecular Docking Simulation , Plasticizers/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Receptors, Thyroid Hormone/drug effects , Receptors, Thyroid Hormone/metabolism , Testosterone/metabolism
17.
Environ Microbiol Rep ; 14(1): 170-178, 2022 02.
Article En | MEDLINE | ID: mdl-35023294

Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ß-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (ΔpcaHG) and the catechol-1,2-dioxygenase (ΔcatA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ß-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance.


Acinetobacter baumannii , Acinetobacter , Acinetobacter/genetics , Acinetobacter/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Adipates/metabolism , Anti-Bacterial Agents/pharmacology , Benzoates/metabolism
18.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Article En | MEDLINE | ID: mdl-34995458

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Aminoquinolines/chemistry , Drug Design , Proteins/metabolism , Administration, Oral , Aminoquinolines/metabolism , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Animals , Benzoates/chemistry , Benzoates/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Half-Life , Humans , Male , Mice , Molecular Conformation , Molecular Dynamics Simulation , Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Rats , Structure-Activity Relationship
19.
Life Sci Alliance ; 4(12)2021 12.
Article En | MEDLINE | ID: mdl-34580179

The high complexity found in microbial communities makes the identification of microbial interactions challenging. To address this challenge, we present OrtSuite, a flexible workflow to predict putative microbial interactions based on genomic content of microbial communities and targeted to specific ecosystem processes. The pipeline is composed of three user-friendly bash commands. OrtSuite combines ortholog clustering with genome annotation strategies limited to user-defined sets of functions allowing for hypothesis-driven data analysis such as assessing microbial interactions in specific ecosystems. OrtSuite matched, on average, 96% of experimentally verified KEGG orthologs involved in benzoate degradation in a known group of benzoate degraders. We evaluated the identification of putative synergistic species interactions using the sequenced genomes of an independent study that had previously proposed potential species interactions in benzoate degradation. OrtSuite is an easy-to-use workflow that allows for rapid functional annotation based on a user-curated database and can easily be extended to ecosystem processes where connections between genes and reactions are known. OrtSuite is an open-source software available at https://github.com/mdsufz/OrtSuite.


Bacteria/genetics , Bacteria/metabolism , Ecosystem , Genome, Bacterial , Microbial Interactions/genetics , Software , Workflow , Acetyl Coenzyme A/metabolism , Base Sequence , Benzoates/metabolism , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , Signal Transduction/genetics
20.
Molecules ; 26(9)2021 May 08.
Article En | MEDLINE | ID: mdl-34066831

The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.


Benzoates/metabolism , Benzophenones/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Xanthones/metabolism , Biotransformation , Carbon-Carbon Ligases/metabolism , Chromatography, Liquid , Coenzyme A Ligases/metabolism , Computer Simulation , Culture Media , Garcinia mangostana/enzymology , Garcinia mangostana/genetics , Malonyl Coenzyme A/metabolism , Plasmids/genetics , Rhodopseudomonas/enzymology , Rhodopseudomonas/genetics , Tandem Mass Spectrometry
...